Transcriptional activation of phosphoenolpyruvate carboxylase by phosphorus deficiency in tobacco.

نویسندگان

  • Kentaro Toyota
  • Nozomu Koizumi
  • Fumihiko Sato
چکیده

Phosphoenolpyruvate carboxylase (PEPC), which catalyses the carboxylation of phosphoenolpyruvate using HCO(3)(-) to generate oxaloacetic acid, is an important enzyme in the primary metabolism of plants. Although the PEPC genes (ppc) comprise only a small gene family, the function of each gene is not clear, except for roles in C(4) photosynthesis and CAM. Three PEPC genes (Nsppc1-3) from the C(3) plant Nicotiana sylvestris were used to investigate their roles and regulation in a C(3) plant, and their regulation by phosphorus depletion in particular. First, the induction of PEPC by phosphorus depletion was confirmed. Next, Nsppc1 was determined to be mainly responsive to phosphorus deficiency at the transcriptional level. Further studies using transgenic tobacco harbouring a chimeric gene consisting of the 2.0 kb promoter region of Nsppc1 and the beta-glucuronidase (GUS) reporter showed that PEPC is transcriptionally induced. It was also found that sucrose had a synergistic effect on the induction of PEPC by phosphorus deficiency. A series of transgenic tobacco containing 5'-deletion mutants of Nsppc1 promoter::GUS fusion revealed that the -539 to -442 bp Nsppc1 promoter region, relative to the translation start site, was necessary for the response to phosphorus deficiency. Gain-of-function analysis using a construct containing three tandem repeats of the -539 to -442 bp region confirmed that this region was sufficient to induce the phosphorus-deficiency response in tobacco.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phosphorus deficiency in Lupinus albus. Altered lateral root development and enhanced expression of phosphoenolpyruvate carboxylase.

The development of clustered tertiary lateral roots (proteoid roots) and the expression of phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) in roots were studied in white lupin (Lupinus albus L.) grown with either 1 mM P (+P-treated) or without P (-P-treated). The +P-treated plants initiated fewer clustered tertiary meristems and the emergence of these meristems was delayed compared with - P...

متن کامل

The stereochemical course at phosphorus of the reaction catalyzed by phosphoenolpyruvate carboxylase.

[(S)-16O,17O]Thiophosphoenolpyruvate has been used as a substrate in H218O for the reaction catalyzed by phosphoenolpyruvate carboxylase, and the absolute configuration of the product, inorganic [16O,17O,18O]thiophosphate, has been determined. The reaction proceeds with inversion of configuration at phosphorus, thus ruling out the cyclic mechanism that has been proposed for this enzyme. The ste...

متن کامل

Metabolite activation of crassulacean Acid metabolism and c(4) phosphoenolpyruvate carboxylase.

The effects of glycine, alanine, serine, and various phosphorylated metabolites on the activity of phosphoenolpyruvate (PEP) carboxylase from Zea mays and Crassula argentea were studied. The maize enzyme was found to be activated by amino acids at a site that is separate from the glucose 6-phosphate binding site. The combination of glycine and glucose 6-phosphate synergistically reduced the app...

متن کامل

The Effect of Adenine Nucleotides on Purified Phosphoenolpyruvate Carboxylase from the CAM Plant Crassula argentea.

The effects of adenine nucleotides on phosphoenolypyruvate carboxylase were investigated using purified enzyme from the CAM plant, Crassula argentea. At 1 millimolar total concentration and with limiting phosphoenolpyruvate, AMP had a stimulatory effect, lowering the K(m) for phosphoenolpyruvate, ADP caused less stimulation, and ATP decreased the activity by increasing the K(m) for phosphoenolp...

متن کامل

Lactobacillus acidophilus NS1 Reduces Phosphoenolpyruvate Carboxylase Expression by Regulating HNF4α Transcriptional Activity

Probiotics have been known to reduce high-fat diet (HFD)-induced metabolic diseases, such as obesity, insulin resistance, and type 2 diabetes. We recently observed that Lactobacillus acidophilus NS1 (LNS1), distinctly suppresses increase of blood glucose levels and insulin resistance in HFD-fed mice. In the present study, we demonstrated that oral administration of LNS1 with HFD feeding to mice...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of experimental botany

دوره 54 384  شماره 

صفحات  -

تاریخ انتشار 2003